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Abstract—In this paper a laminated plate which consists of an arbitrary number of dissimilar
orthotropic layers under membrane and bending loads is considered. The plate is assumed to have
a through crack. The problem is formulated by using Mindlin’s first order shear deformation theory
and a higher order theory due to Reddy. The sample solutions obtained from these two theories,
from the classical theory, and from Reissner’s stress-based first order theory show that the stress
intensity factors given by the classical theory are highly inaccurate and the three transverse shear
deformation theories give roughly the same results. Because of the nonhomogeneous nature of the
medium under consideration, the simpler of the two displacement-based shear deformation theories
was adopted to carry out the solution of the crack problem in the laminated plates. The main
objective of the study is to investigate the influence of the material orthotropy, various stiffness
ratios, and relative dimensions concerning the crack size and laminae thicknesses on the stress
intensity factors. Only the mode I crack problem is considered. It is shown that if the laminate has
a material symmetry with respect to the midplane of the plate, then the membrane and bending
solutions of the problem are fully uncoupled. Also, in laminates which consist of bonded dissimilar
isotropic layers having the same Poisson’s ratio, the membrane component of the crack problem
can again be separated and can be treated as a generalized plane stress problem. Otherwise the
problem is coupled. Examples are given for both symmetric and nonsymmetric laminates.

1. INTRODUCTION

The question of primary concern in this series of papers will be the fracture mechanics of
laminated materials under a combination of membrane and bending loads. With the appli-
cation to composite laminates and microelectronic devices in mind, it will be assumed that
(a) the medium consists of perfectly bonded orthotropic layers of constant thickness, (b)
the in-plane dimensions of the composite medium are considerably greater than its thickness,
(c) the rectangular coordinates x, y and z are the principal directions of orthotropy for all
layers, z being in the thickness direction, (d) the fracture is confined to a plane of orthotropy
perpendicular to the plate (in this case the yz plane), and (e) the external loads are symmetric
with respect to the plane of the crack. From a viewpoint of fracture, fatigue and corrosion,
in orthotropic materials the planes of orthotropy are generally also the planes of relatively
weak fracture resistance. Therefore, in many cases the fracture process may initiate at the
surface of the composite laminate in a plane of material symmetry and grow subcritically
in both the thickness and the length directions. Upon reaching an interface the crack may
be arrested, may grow only in the length or the thickness direction or in both directions,
or a delamination crack may initiate and grow along the interface. If the delamination does
not take place, then the crack may eventually grow through the entire plate thickness. The
progress of the crack front can be monitored analytically by following the procedure
described by Joseph and Erdogan (1989) provided the appropriate subcritical crack growth
characterization of the material and a technique of calculating the stress intensity factor
for a part-through crack front of arbitrary profile are available.

The three-dimensional surface crack problem as stated is analytically intractable.
However, it has been shown that representing the medium by a “plate”, using the concept
of the “line spring model” [e.g. Rice and Levy (1972)], and by using a refined plate theory,
it is possible to obtain a solution to the surface crack problem that compares rather well
with the existing finite element results given, for example, by Newman and Raju (1979) [see
Joseph and Erdogan (1989) for various comparisons]. In this study the application of the
plate theory-line spring method will be extended to orthotropic laminated plates having a
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surface crack. The application of the method requires the formulation of the laminated
plate containing a through crack under arbitrary membrane and bending loads and the
solution of the corresponding plane strain problem for the composite medium with an
edge crack. These two problems will, therefore, be considered separately to obtain the
information needed for the solution of the surface crack problem, which will then be
described in a third article.

In this first article the primary interest is in the solution of the through crack problem.
Some of the factors relevant to the study are the material orthotropy, stacking sequence of
the laminae and the particular plate theory used in the formulation. The classical plate theory
employing the Kirchhoff hypothesis is described by Lekhnitskii (1968). An improvement of
the theory including the bending-membrane coupling in unsymmetrically stacked laminates
is discussed by Reissner and Stavsky (1961). Various transverse shear deformation theories
including those introduced by Reissner (1945) and Mindlin (1951) are reviewed by Reddy
(1989). In addition to being necessary for the formulation of a surface crack problem, the
solution of the through crack problem may be useful in studying fracture mechanics of
relatively thin laminates in which the effect of bending and membrane-bending coupling
may not be negligible. It should also be remarked that other than for isotropic or orthotropic
homogeneous plates, no numerical or analytical studies seem to exist which describe the
solution of a laminated plate containing a through crack and subjected to remote bending.

2. FORMULATION OF LAMINATED PLATES

In formulating the bending problems in plates by using a first order transverse shear
theory one may start with some initial assumptions regarding the thickness distribution of
either in-plane stresses or in-plane displacements. Generally the former approach is associ-
ated with Reissner and the latter with Mindlin. In both theories the in-plane stress and
displacement components turn out to be linear in the thickness coordinate z. Both theories
are “approximate” in that they do not satisfy all of the equations of continuum elasticity.
The inconsistency in the Reissner’s theory is in the distribution of transverse displacement
(Reissner, 1945), whereas Mindlin’s theory does not satisfy the boundary conditions on
the plate surfaces (Mindlin, 1951). In the problem under consideration because of the
nonhomogeneous nature of the medium it is much more convenient to use a displacement-
based theory. Even though in the main problem of interest the elastic properties of the plate
are piecewise constant in the thickness direction, the formulation used is applicable to
general nonhomogeneous plates in which the elastic moduli may be arbitrary functions of z.

The description of the general laminated plate theory may be found in Yang et al.
(1966) where Mindlin’s theory for homogeneous plates (Mindlin, 1951), is extended to
heterogeneous plates and plates which consist of bonded anisotropic layers. In the modei
the displacement field is assumed to have the form:

u(x’ b Z) = u()(xs Y) +Z¢.\'(x’ .V)a

U(X, Y Z) = v(l(x’ )’) +Z‘//y(xa )’),

wx,y,z) =w(x,y), 0<z<h, 1)
where w is assumed to be independent of z and u, and v, are the in-plane displacements at
the reference plane [midplane z = k/2 for the symmetrically laminated plates and z = 0 or
the neutral plane z = ¢, for nonsymmetric plates, z = 0 and z = A being the plate boundaries

(Fig. 1)]. The unknown functions ug, vo, W, ¥, and ¥, are determined from the following
equilibrium equations:

ON. ON, N, ON,,
= = 0
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—2 -0, =0, —2*-0,=0,
ox + oy - 0x + dy 0
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Fig. 1. The geometry and notation for the laminated plate containing a through crack.
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where N;;, O, and M;; (i, j = x, y) are the stress and moment resultants in the plate. By
defining
Qg v dw ooy _
ax = ©x0s ay — S0 ay ax _yxyO;
o, G, o,
'// = lpy ‘// + % = kXys

ox T 52 8y ox
from (1) and (3) the components of the strain tensor may be expressed as

ou o ou Ov

Exx = a = &4 +ka, syy = @ = y0+2ky, ?xy = 5 + é; = 'yxyo"‘kay,
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Also, defining the stress and strain matrices by
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6=lo, o,

&= [gxx 8}{\‘ £, ‘yy: Vxz y”]'r’ (6)
the stress-strain relations for an orthotropic medium may be written as
o = Cg, (7)

where C = (Cy), (i, j = 1,...,6), is the elasticity matrix. By using (7), for the orthotropic
plates the stress and moment resultants may be expressed as

N = Ke, ®)
N= [N\:x N ¥y N. Xy M xx M ¥y M Xy Q_v Qx]Ts (9)
€= [8x0 ‘L“y(] sxy() kx ky kxy yyzﬂ 'sz()] T’ ( 1 O)

A, A, 0 B, B, 0 0 0

A,y A, 0 B, By, O 0 0

0 0 A O 0 Be O 0

B, B, O D, D, 0 0 0
K=18, By 0 Dy Dy 0 0 0 (1

0 0 Be O 0 D¢ O 0

0 0 0 0 0 0 A, O

| 0 0 0 0 0 0 0 Ass |
h
(A4, B;, D,;) =L (1,2,29)C(z)dz, (i,j = 1,2), (12)
h
(A66> Bess Dgs) = L (],z,zz)C(,(,(z) dz, (13)
A

(A4s, Ass) = KOJ; [C44(2), Css(2)] dz, (14)

where k, is a constant. In Reissner’s stress-based theory (Reissner, 1945), k, has the value
5/6 for an isotropic plate in whch the distribution of the transverse shear stress through the
thickness is parabolic. It is calculated to be =/ \/1—2 by Mindlin through matching the circular
frequencies of the first antisymmetric mode of thickness-shear vibrations as given by the
plate theory (Mindlin, 1951), and by the exact elasticity theory (Timoshenko, 1937). Simi-
larly, x, is assumed to be 2/3 in considering the transverse vibrations of a homogeneous
plate (Uflyand, 1948). However, if one resorts to no artificial means, generally in dis-
placement based shear deformation theories x, turns out to be 1 (Yang et al., 1966). From
(12) it may be observed that since C;; = C;;, we have 4;,= A, B;;= Band D;; = D,.

In this study it is assumed that the plate surfaces z = 0 and z = A are traction-free and
appropriate moment and stress resultants M,;, N;;, O; (i, j = x, y), are prescribed along the
boundaries of the plate away from the crack region. Generally, the plate is assumed to
consist of n perfectly bonded homogeneous orthotropic layers of constant thickness 4,
(k=1,...,n), Zh, = h. In this case the functions C;;(z) would be piecewise constant. If
the midplane of the plate is a plane of material symmetry, then by selecting z = 0 at the
midplane, from (12) and (13) it may be seen that since C;;(z) = C;;(—z), the partitioned
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matrix B becomes zero [i.e. B;; =0, (i, j = 1,2), Bgs = 0] and the “membrane” and “bend-
ing” solutions of the problem would be fully uncoupled. In fact, from (2), (3) and (8)—(12)
it is seen that the first two equations of (2) giving the unknown functions u, and v,
correspond to the membrane component of the problem. This is a generalized plane stress
problem. The remaining three equations in (3) give the unknowns w, ¥, and ¥, and
constitute the bending component. Clearly, if there is no material symmetry, B;; and B,
would not be identically zero and the bending and membrane responses of the plate would
always be coupled. In this case, by substituting from (8)—(10) and (3) into (2) we obtain a
system of five second order differential equations in terms of five unknown functions u,,
Vo, W, Y, and ¥,

In the foregoing formulation which is essentially given by Yang et al. (1966), since
g,, = 0, it is not possible to make a statement about the distribution of ¢,,. From (4), (6)
and (7) it follows that o, is linear in each layer and does not satisfy the boundary conditions
at z = 0 and z = A. Since the result ¢, = 0 is somewhat unrealistic, one could replace it by
the condition that various weighted averages of ¢,, in 0 < z <  are zero (Whitney and
Pagano, 1970), namely

h
jaz,wi(z)dz=0, i=1,...,4, (15)
0

where the weight functions w; are defined below. To follow this alternate approach, we
solve g, from the third equation of (7) and substitute the result into the first and second.
Thus, the first three equations of (7) become

0= Caty+ =205, (i=1,2,3), (x=1,2), (16)
C33
Cis .

C-i’a = Citx'“ “CZ&M (3 = 1329 3)9 (ﬁ = 132) (17)
Css

By using (16) and ( I’_T_) it may easily be shown that the stiffness matrix K defined by (11)
must be replaced by K which in turn, is obtained from (11) and (12) by replacing C, ;(2) by
Cii(2), (i, j = 1,2) and by assuming the weight functions w, to be

C C C C
w‘(z)=~é§-, w2<z)=-5§§, w3(z>=—c—;—j-z, wa(z =~é—’iz. (18)
33

From (3)-(7) it may be observed that in the first order shear deformation theory
described in the previous section, in each layer the in-plane stresses o,,, o,, and o,, are
linear functions in and the transverse shear stresses o,, and o,, are independent of the
thickness coordinate z. Thus, since o, and ag,, are zero on the plate surfaces z = Qandz = 4
and are constant for 0 < z < A, the theory violates the local equilibrium conditions at z = 0
and z = h. To remove such inconsistencies some higher order shear deformation theories
have been proposed (Lo et al., 1977 ; Tiffen and Lowe, 1963). Since these theories involve
terms with additional powers of z and, correspondingly, additional unknown functions, they
are more complicated and computationally more demanding. The alternate formulation that
will be used in solving the crack problem is due to Reddy (1984). This is an extension of
the model described by Levinson (1980) for homogeneous isotropic plates to laminated
anisotropic plates. The model accounts for the parabolic variation of transverse shear

strains without introducing additional unknowns. It is based on the following displacement
field :
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u(x, y,z) = uy(x, ,V)+Z|:lﬁx— 2(

Li®]

In addition to the quantities defined by (3)—(5) if we define

4 (o, *w 4 [0y, O*w
ho o= — [ ZZY 4 2= = e e Yy
SR TE <6x + 8x2>’ h 3h~<ay T
4 (o, oy, . dtw
h -~ S g —
v =g (ax + o P2ox av>’

the strain field may be expressed as

. -3
Exx = Exp + Zkr +z h\., S)'V

_ ., . 3
)’.\y — /x0 + ‘k,\j‘ +:z h.\ v

2 22
yy: = <l _4;F>’))r:0~ Vaz = (1 ‘“4;{2—)%\-:0-

It may then be shown that the plate constitutive equations (8) may be replaced by

N = He,

where N is defined by (9) and

= [8.\() Sy() 8.\')'() k ¥ ky k,\‘y h,\‘ hy hxy ‘yy:() b4 x:O]T
(4, 4. O B, B, 0 E, E, 0 0 0|
Ay A 0 B,, B, 0O E, E,, O 0 0
0 0 Ay 0 0 Bee 0 0 Ee O 0

H= g B, 0 Dy Dy 0 Fo Fy 0 0 0
0 0 By 0 0 D¢ O 0 Fe 0 O
0 0 0 0 0 0 0 0 0 Gy O
i 0 0 0 0 0 0 0 0 0 0 Gss
thi2
(AijaBifaDij;Eiij‘i/)z (1,2,22,23,24)CU dZ’ (la.] = 1,2),
Joni2
fhi2
(As6> Boss Do, Egy Foo) = (1»2532-33’24)C66 dz,
J-n2
hi2 472
(G4, Gss) = <] - h})(cuv Css) dz.
J—hi2

8)'0 + Zky + ZSh_vv & = Oa

(19)

(20)

@hH

(22)

(23)

24)

(25)

In (24) also it is assumed that ¢.. = 0. On the other hand if the condition ¢.. = 0 is replaced
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by (15), then in (24) C; (i, j = 1,2) must again be replaced by C;; (i, j = 1,2) which is
given by (17).

3. FORMULATION OF THE CRACK PROBLEM

The problem of interest is shown in Fig. 1. The laminated plate under consideration
consists of an arbitrary number of bonded orthotropic layers and contains a through crack
of length 2a. The total thickness of the plate is # and the coordinate axes x, y, z are assumed
to coincide with the principal axes of orthotropy in each layer. The transverse shear
deformation theory for laminated heterogeneous plates described in Section 2 will be used
to formulate and solve the crack problem. For comparison some limited results obtained
from a higher order shear deformation theory and from Reissner’s theory will also be
provided.

Defining now the displacement matrix by

u=w)=[u vo Y. ¥, wl', (=1...,5) (26)

and substituting from (3)—(5) and (8)—(10) into the plate equilibrium equations (2) we
obtain a system of second order partial differential equations of the following form :

Lu;(x, 1 =0, (Gj=1,...,5). 27
If we express u;(x, y) by the following Fourier integrals

o0

1 )
w=5g | dinoede, (=1,....5), (28)

from (27) it follows that

P +0Q6¢.+Rp =0, 29)

where

d=1[0 ¢ ¢35 ds ¢4, (30)

and the square matrices P, @ and R are known functions of « and the material constants
defined by (12)—(14) [see Wu (1990) for details].

We assume that the applied loads are symmetric with respect to the x = 0 plane and
through a proper superposition the crack problem is reduced to a local perturbation problem
in which the crack surface membrane and moment resultants N,, (0, y) and M,, (0, y) are
the only non-zero external loads. Thus, upon determining the eigenvalues s; and eigen-
functions S;; of the system of differential equations (29), its solution may be expressed as

o, = kZ Si(@Ac(@)e**, Re(s)) <0, (k=1,...,5), 31

where the unknown functions 4, are determined by using the boundary conditions at x = 0.

Because of symmetry the problem is a mode I crack problem and is subjected to the
following boundary conditions :

ny(O, }’) = 0’ Mxy(O; J’) = Oa Qx(o’ .V) = 0’ — 0 <y < o0, (32)
No(0%, ) =hfi(y), Iyl <a, ue(0,5) =0, |y|>a, (33)

Mo (0%, y) = F*[6° f2(3), ¥l <a, ¥.(0,y)=0, |y|>a, (349
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where f| and f, are known functions. The homogeneous equations (32) may be used to
eliminate three of the unknown functions A ,(«). The mixed boundary conditions (33) and
(34) would then give a system of dual integral equations to determine the remaining two.
The mixed boundary value problem may also be reduced to a pair of integral equations in
terms of the unknown functions defined by

0 8
é‘f;uo(o, N=610) S ¥:0.) =200, —o0 <y <o (35)

Clearly, by substituting from (28) and (31) into (32) and (35), all five unknowns 4; may
be expressed in terms of ¢, and g,. Thus, by observing that g, = 0, g, = 0 for |y| > a and
by referring to Wu (1990) for details, conditions (33) and (34) may be expressed as

vl_i.r?o ‘Zgj(t) dtf my(x,0) e N da = fi(y), k=12, |yl<a, (36)

—da ]

where m,; are known functions. The singular behavior of the kernels in (36) may be
determined by examining the asymptotic nature of the integrands m,; for |«| —» co. We note
that m,; are functions of s; and contain the damping terms exp (5;x), (i = 1,...,5) where
Re s;(x) < 0. The difficulty in this problem, of course, is that the functions s,(a) are not
explicitly known in terms of «. For the purpose of examining the singular behavior of the
kernels in (36) all one needs, however, is the asymptotic expressions of s;(x) for |af — oo.
Thus, from the characteristic equation (29) for large values of |«f it can be shown that

S"(“):—<s(,+“z‘+ii§+~-->, (i=1,....9, (37)

where sy, 5;/, . . . are constants.
Now, by using the relations (37) and separating the asymptotic values m,; for large
|}, (36) may be expressed as

2 .u'kj a 9,(’) 2 7]
Y TR Rdr+ Y | kg(nng(0dr = fi(), k=12, —a<y<a (38)
I R A 4 j=1dJ-a

In (38) w; are material constants obtained from the asymptotic analysis and k,; are the
Fredholm kernels. From (33)—(35) it may be seen that eqns (38) must be subject to the
following single-valuedness conditions:

J(I g,(ndr=0, (j=12). (39)

If the midplane of the composite plate is a plane of material symmetry, by selecting it
as the reference plane it can be shown that in (36) m,, and m,, are zero giving u;, =0,
#21 =0, k\, = 0 and k,, = 0. In this case the crack problems for the layered plate under
membrane and bending loads would be uncoupled.

4. SOLUTION AND THE STRESS INTENSITY FACTORS

Since the dominant kernels of the system of integral equations (38) are of simple
Cauchy type, its solution may be expressed as follows:
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G )
9,(t) = (az—_gzws (=12, (40)

where the functions G, and G, are bounded in —a < ¢ < a and non-zero at t = Fa. The
singular integral equations may be solved by defining the normalized quantities

G,
r=ta, s=yla, g,)= \/(;L)/f (=12 @1
—-r
and by letting (Erdogan, 1978)
Gj(ar) y .
= i = 42
; "goa,nTn(r), (=12, 42)

the unknown coefficients a,, are determined by substituting from (41) and (42) into (38).
An important physical quantity in the problem is the crack opening displacement
defined by
u(oa y,Z) = uO(O, y)+z‘/lx(05 y)9 (_a <y< a)' (43)

From (35), (40) and (42) it may be shown that

y © 1
uy(0,y) = j gi(Hdt = — Z ;aann—l(g)\/ a’—y* |yl <a, (44)
—a n=1

y o] 1
Y0, y) = J_ g:()dr=—% ;aan,.qG)\/az—yz, Iyl < a. 45)

=1

From the viewpoint of fracture mechanics perhaps the most important quantity of
interest is the stress intensity factor, which, in the mode I problem under consideration, is
defined by

kl (Z) = l_l,ni / z(y_a)oxx(oa Y, Z)' (46)

If y = 0 is not a plane of symmetry, a similar expression holds for the stress intensity factor
at y = —a. It can be shown that the stress intensity factor may also be obtained from the
following alternate expression :

ki(z) = ylir:{ iy /2(a—y)%u(0, ¥,2) 47)

where /i is a material constant. For isotropic materials j is given by

, 48)

where p is the shear modulus, k = 3—4v for plane strain and x = (3—v)/(1+v) for gener-
alized plane stress conditions. In the shear deformation plate theory used, even though the
crack opening displacement is continuous in z, because of the discontinuity in material
constants the stress intensity factor is expected to be discontinuous across the interfacial
planes and /i in (47) must be determined for each orthotropic layer separately. Defining the
inverse of the stiffness matrix C given in (7) by
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Cl=c=(c), (j=1,...,6), (49)

it can be shown that (Sih and Liebowitz, 1968),

. ‘ﬁldzz)vl/z[(d:n)m 2dyy+dge |72
“"2< 2 &) T2y | 0

where

dy=cyy, dy=cy, dir=c, dge = Cgq (51)

for generalized plane stress and

2 2
Ci1C33—Ci3 €22033—C23 C12€33—C13C3
dyy = RNy = BRI g, STRIMTINM g s (52)

C33 C33 C33

for plane strain conditions.

5. RESULTS AND DISCUSSIONS

The problem considered in this paper is a three-dimensional crack problem in which
the plane of the crack intersects the stress free surfaces perpendicularly and at the point of
intersection the stress state has a singularity of the form p~', where p is a small distance
from this point (Benthem, 1977 ; Benthem, 1980 ; Bazant and Estensorro, 1979). The results
given by Benthem show that for 0 < v < 0.5 we have 0.5 > a > 0.3318 for mode I and
0.5 < a < 0.6462 for modes II and III deformation states. Thus, the stress intensity factors
defined on the basis of conventional square root singularity along the crack front0 < z < 4
would have the behavior [k, (z)] — 0, |k,(2)| = oo and |k;(2)| = o0 as z — 0 and z — k where
z = 0 and z = hcorrespond to the plate surfaces. This traction-free surface effect has indeed
been clearly demonstrated by full-field finite element analysis for the in-plane loading
conditions (Nakamura and Parks, 1988, 1989). For plates under bending even though one
would expect to have a boundary layer with relatively smaller thickness than the plates
under membrane loading, the basic trends regarding the behavior of the stress intensity
factors near and at the plate surfaces should remain unchanged. On the other hand, as
shown by Bazant and Estensorro (1979), the singularity « is dependent on the angle between
the crack front and the plate surface as well as the Poisson’s ratio. Thus, under conditions
of linear elastic fracture, that is for crack propagation in brittle solids and for low amplitude
subcritical crack growth in most engineering materials, near the surfaces the crack front
adjusts itself in such a way that « becomes 0.5. This would result in a slight “tunneling” for
mode I and ““chevron” effect for modes II and I crack propagation (Joseph and Erdogan,
1989).

In all finite element and other approximate solutions of plates containing part-through
or through cracks and subjected to bending that appeared in literature up to now the
traction-free surface effect on the stress singularities seems to have been ignored. From a
practical view point the consequence of this is that essentially a curved crack front is
approximated by a straight line. Considering all other approximations involved and the
fact that in most cases the deviation from a straight crack front is very slight, the assumption
would not be expected to cause any significant errors. Whether or not explicitly stated, this
has been the rationale for the existing finite element and approximate analytical solutions
of the through crack problems in plates under bending. In fact the handful of finite element
solutions that exist are obtained for isotropic and homogeneous plates (Barsoum, 1976 ;
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Fig. 2. Comparison of the normalized stress intensity factors given by the finite element method
and the Reissner plate theory for a homogeneous isotropic plate with a through crack under
cylindrical bending, M, 0, = 6My/h% v = 0.3.

Alwar and Nambissan, 1983 ; Raju, 1987). For v = 0.3 Fig. 2 shows the comparison of the
mode I stress intensity factors k, (%/2) obtained from these finite element solutions with that
given for a homogeneous isotropic Reissner plate under cylindrical bending (Joseph and
Erdogan, 1989, 1991). First, it should be remarked that the finite element results shown in
Fig. 2 are far from being exact. Secondly, the classical plate theory would give the closed
form solution k,(z) = (2z/h)(6M,/h*)./a which is independent of h/a as well as the Pois-
son’s ratio. Thirdly, the agreement shown in the figure indicates that a simple transverse
shear theory could be counted upon to give sufficiently reliable results.

Nearly all solutions of the crack problems in plates under cylindrical bending that
appeared in literature up to now have been obtained by using either the classical or the
Reissner’s plate theory. It would, therefore, be worthwhile to compare the results obtained
from various plate theories. This comparison is shown in Table 1 for a homogeneous
isotropic plate under cylindrical bending. In these and in ail subsequent examples given in
this paper it is assumed that the weighted averages of ¢, rather than ¢,, are zero. That is,
it is assumed that the conditions (15) rather than ¢,, = 0 are valid and consequently, in (12)
and (25a) the material constants C;; defined by (17) rather than C;; are used to calculate
the coefficients of the plate stiffness matrices K and H. First we note that since the length
parameter a/h is lost in formulating the crack problem by using the classical plate theory,
the results turn out to be independent of a/h. Secondly, for values of a/h that are large
enough for “plate” theories to be valid, from Table 1 it may be seen that the classical plate
results are highly inaccurate. Finally, the table shows that the results given by the three
shear deformation theories considered are sufficiently close. Thus, one would expect to
obtain acceptable results if one uses a relatively simple first order transverse shear theory
such as Mindlin’s.

To give some idea about the effect of the Poisson’s ratio on the stress intensity factors,
the results for v = 0 and v = 0.5 obtained from the Reissner’s theory are also included in
the table. These results and the asymptotic values of the normalized stress intensity factors

Table 1. Comparison of the normalized stress intensity factor k,(h/2)/ab\/(; for an iso-
tropic homogeneous plate under uniform bending obtained from various shear deformation
theories, 6, = 6My/h%, My = M (o0, y)

Reissner Reissner Reissner Mindlin Reddy
Classical =0 (v=03) (v=0.5) v=0.3) (v=103)
afh  (kKe=0)  (kg=5/6) (x0=5/6) (k9g=5/6) (xp=1) (o= 1)

0.05 Lo 0.9851 0.9885 0.9900 0.9869

0.1 1.0 0.9583 0.9676 0.9717 0.9632 0.9676
0.25 1.0 0.8735 0.8992 09111 0.8895 0.8892
0.5 1.0 0.7804 0.8193 0.8383 0.8087 0.8193
1.0 L0 0.7020 0.7475 0.7707 0.7401 0.7477
2.0 L0 0.6518 0.6997 0.7247 0.6982 0.7008
—00 1.0 0.5774 0.6277 0.6547
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Table 2. The effect of transverse shear correction factor «,,

on the stress intensity factor in a homogeneous isotropic

plate under uniform bending, v=10.3, o, =6My/h>
My=M (o, )

Ky

alh  0.0001 5/6 1 10 100

0.05  1.000 0.9885 09869 09338  0.8141
0.10  1.000 09676 09632  0.8634  0.7449
025  1.000 0.8992  0.8895  0.7610  0.6898
0.5 0.9997 08193  0.8087 0.7090  0.6684
1.0 09990 0.7475 07401  0.6793

for (a/h) - oo are taken from Joseph and Erdogan (1991). Unless the z-dependence is
specifically considered, the stress intensity factors given in this paper are those calculated
at the plate surface. Needless to say, the bending results given in this paper can be meaningful
only if the plate is also under membrane loading of sufficient magnitude so that k,(z) > 0
everywhere along the crack front and there is no contact of the crack surfaces on the
compressive side of the plate.

The transverse shear correction factor k, = 5/6 arises naturally in formulating the
plate problem by using the Reissner’s theory. In displacement-based first order transverse
shear theories x, is introduced artificially. In the higher order shear deformation theory
proposed by Reddy, the transverse shear stress distribution is parabolic and satisfy plate
surface traction boundary conditions ; consequently there is no need for . In the classical
plate theory «, is zero. Table 2 shows the effect of x, on the stress intensity factors &k (h/2)
in an isotropic, homogeneous plate under cylindrical bending. The results are obtained for
v = 0.3 by using Mindlin’s shear deformation theory. Note that k,(h/2) is a decreasing
function of x4 as well as a/h. In the displacement-based shear deformation theories the
derived value of «, is one. Therefore, the remainder of the results given in this paper will
be based on the generalized Mindlin’s first order shear deformation theory and on the
assumption that xy = 1.

Tables 1 and 2 show the effect of various plate theories and the transverse shear
correction factor x, on the stress intensity factor &k, in homogeneous isotropic plates. To
give some idea about the influence of k, on k, in laminates which consist of bonded
orthotropic or isotropic layers, some limited results are also obtained by using Mindlin’s
theory with x, = 1 and x, = 5/6. The results are shown in Tables 3 and 4. Table 3 shows
the stress intensity factors k, for a plate which consists of two bonded orthotropic layers
under membrane loading or bending moment [see Fig. 1(b)]. The elastic properties of
orthotropic materials used for Table 3 are given in Table 5. Note that k, is calculated on
the surfaces of the plate, that is at z = h—c, and z = —¢,, where ¢, defines the location of
the neutral plane. The results for.a laminate which consists of three dissimilar isotropic
layers are shown in Table 4. The tables show that in a displacement based shear deformation
theory assuming the transverse shear correction factor x, to be 1 as it comes out of the
analysis or 5/6 to make it conform to the Reissner’s stress-based theory does not seem to
have any more influence on the stress intensity factors in laminated isotropic or orthotropic
plates than they do in isotropic homogeneous plates.

Table 3. The effect of k., on the normalized stress intensity factors & (h—cq)/kq,
and k,(—co)/k, in a plate which consists of two bonded orthotropic layers
and is subjected to uniform membrane loading N, = N, or cylindrical bending
M, = M, [Fig. 1(b)]. Layer ! is Material 4, Layer 2 is Material B, h, =
h,=hf2, alh=1, ko= (No/h)\/; for membrane loading, ko = (6M/h*) \/a

for bending
ky(h—co)lko k(—co)ko
Ko=1 K,=15/6 Ko =1 Ko = 5/6
Membrane loading 0.8788  0.8775 1.1207 1.1222

Bending moment 0.7921 0.8019 —0.8327 —0.8435
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Table 4. The effect of x, on the normalized stress intensity factor
k,(2)/k, in a laminate which consists of three different isotropic
layers and is subjected to membrane loading N,, = N, or bending
moment M, = M, [Fig. 1(c)]. Layer 1: E; =3 GPA, v, =0.5,
Layer 2: E, =1 GPA, v, =0, Layer 3: E; =10 GPA, v;=0.3;
hi/hy =S5, hy = h,, alh = 1; 7 is measured from the bottom surface

Membrane loading Bending

z/h Ko=1 Ko=5/6 Ko =1 Ko = 5/6
0.0 1.2166  1.2175 —0.7904 —0.7989
0.1429-0 1.1999  1.2006 —0.6187 —0.6253
0.1429+-0 0.3995  0.3997 —0.2060 —0.2082
0.8571—0 0.3717 03716 0.0799 0.0808
0.8571+0 3.7169  3.7161 0.7933 0.8079
1.0 3.6613  3.6599 1.3712 1.3859

In the examples considered in the remainder of this paper it will be assumed that the
laminated plate consists of actual orthotropic laminae, bonded isotropic layers, or layers
with hypothetical material properties. The third group of materials were considered for the
purpose of studying the effect of specific material constants on the stress intensity factors.
The material constants of the orthotropic layers used in the examples are given in Table 5.
Both materials are fiber-reinforced graphite-epoxy composites. Note that material B is the
same as A except that the medium is rotated 90° about the z-axis relative to the coordinate
system,

Figure 1 shows the three types of laminations considered as examples. In all cases the
crack is in the yz-plane and the neutral plane is selected as the reference plane z = 0.
Depending on the relative thicknesses and stiffnesses, the constant ¢, defines the reference
plane. The only external load used is either the membrane loading

Nxx(osy) = —NOa —a<y<a, (53)
or the bending moment
M.0,y)=—-M, —-a<y<a, (54)

corresponding to uniform neutral plane tensile loading parallel to the x-axis and cylindrical
bending about the y-axis.

Figures 3-7 show the normalized stress intensity factor k,(4/2)/k, in a three-layer
symmetric laminate containing a through crack of length 24 [see Fig. 1(a)]. In these figures
the normalizing stress intensity factor &, is o, \/;, where g, = 6M,/h? is the surface stress
0.x(h/2) in a corresponding homogeneous plate of thickness 4 subjected to uniform bending
M,, = M, away from the crack region. The stress intensity factor k, is obtained from (47)
at z = h/2 by using the appropriate modulus fi. In Fig. 3 it is assumed that the core [material

Table 5. The material constants of the orthotropic

layers used in the examples. E;and G;;, (i, j = x, y,2)

are in GPA. The materials are fiber-reinforced
graphite-epoxy composites

4 B
E, 39.0 30.6
E, 30.6 39.0
E, 6.4 6.4
G,y 19.7 19.7
G, 45 45
Gy 45 45
Vo 0.447 0.351
V,e 0.275 0275

)F
&

0.275 0.275
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Fig. 3. Normalized stress intensity factor k,(h/2)/k, at z = h/2 in a three-layer symmetric laminate

under cylindrical bending [Fig. 1(a)]. The core is Material 4, the surface layers are (1) E = 390

GPA, v = 0.3 (isotr.), (2) Material 4, (3) Material B, (4) E = 3.9 GPA,v=10.3, (5) E = 0.39 GPA,
v = 0.3 (labelled in descending order of E,). k, = a,,\/a, 6s = 6My/h% hy = h, = h/2.

1 in Fig. 1(a)] is Material A shown in Table 5 and the surface layers are any one of the
five different materials (1),..., (5). The corresponding stress intensity factors are marked
by (1),...,(S5) on the figure. Materials (1), ..., (5) are either orthotropic (4 or B shown
in Table 5) or isotropic with the Poisson’s ratio v = 0.3 and the Young’s modulus 0.39, 3.9
or 390 GPA. Note that the case (2) in Fig. 3 corresponds to a homogeneous orthotropic
plate. In laminates since the stiffer layers would be under greater stress, they would also
have greater stress intensity factors than the corresponding homogeneous plates. Also note
that, as expected, in all cases &, is a monotonically increasing function of h/a.

Figure 4 shows the influence of the modulus ratio E,/E, and A/a on the stress intensity
factor at z = h/2 in a symmetric laminate that consists of three isotropic layers, where E;,
h, and E,, h, relate to the core and the surface layers, respectively, s, +h, = h [Fig. 1(a)],
and in all cases shown v = 0.3. Again, note that the case of E,/E, = 1 corresponds to an
isotropic plate, stiffer layers have the greater stress intensity factors, the effect of the stiffness
ratio E,/E, on k, can be very significant, and k, is a monotonically increasing function of
hja.

1.2¢
Eg/Ey=10.
7. F
o I
<
< -8}
‘\ -
o
> .6t
N
2
L4t
% 5 7.8 0.

ﬁ/a a/h

Fig. 4. Normalized stress intensity factor k,(4/2)/k, in a symmetric laminate that consists of three
isotropic layers and is subjected to cylindrical bending; core: (E,, v,, h,), surface layers: (E;, v,
Baf2), by = hy = B2, v, = v = 0.3, ko = 6,,/a, 5, = 6Mo/h>.
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7.8
7.8 Eg/Eq=16.
£1.4 ) 10.
Q F
Lq.2t 5.
L
7. t\ 2
.80 " A " 10 3 i el " 2Io

T

Fig. 5. The effect of stiffness ratios on &, (A/2)/k, in a honeycomb plate. k, = a,,ﬁ, 6, = 6My/h?,
hi/hy=5,alh =1, TT = G,/G,,, G,, = Gi,.

A material of some considerable practical interest is a “honeycomb structure” which
can be modeled as a three-layer symmetric laminate with the following features [Fig. 1(a)]:

@ hy>» hy,

(b) E;>» E,,

(c) Surface layers are isotropic and the core region is orthotropic with transverse shear
stiffnesses G,, and G,, being considerably greater than the in-plane shear stiffness G,,.

The stress intensity factor k,(h/2)/k, in such a laminate is shown in Figs 5-7. In these
examples the isotropic surface layers have the elastic constants E, and v, = 0.3. The
material properties of the core region are assumed to be E, = E, = E|, G,, = E,[2(1 +v,),
Vo =V, =03, and G,, = G,, = TTG,, where the coefficient TT is variable. The results
shown are self-explanatory. One may observe that the effect of the shear stiffness ratio
TT is not as significant as the effect of E,/E,. Also note that in Figs 6 and 7 as h,/h, = 0
(with h,+h, = h), in all cases one recovers the isotropic plate result k,(h/2)/k, = 0.7401
(Table 1).

k(h/2)/ko
o

hy/hz

Fig. 6. The effect of TT and A, /h, on k,(h/2)/k, in a honeycomb plate. k, = 6,./a, o, = 6M/h2,
EI/EZ = 10’ a/h = 19 IT= Gx:/wa Gy: = Gx:'
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Eg/Eq4=15.

k(h/2)/ %o
9]

hy/h2

Fig. 7. The effect E,/E, and h,/h, on k,(h/2)/k, in a honeycomb plate. k, = a,,\/'ﬁ, 6, = 6M,/h?,
TT = G,./G,, = 10, a/h = 1, G,, = G...

A second group of examples we consider is concerned with the crack problem for a
laminate which consists of only two layers [see Fig. 1(b) for notation and geometry]. Of
course, the most significant aspect of these examples is the bending-membrane coupling
due to the absence of material symmetry in thickness direction. The mode I stress intensity
factor k, shown in the figures is calculated at the surface z = h— ¢, on the tensile side of
the plate where the neutral plane defined by c, is assumed to be the reference plane z = 0
[Fig. 1(b)]. Figure 8 shows the effect of the modulus ratio E,/E, and a/h on the normalized
stress intensity factor. The effect of the thickness ratio k,/h, is shown in Fig. 9 for a plate
consisting of two orthotropic layers and subjected to bending. The material properties are
given in Table 5. The results concerning the effect of both the stiffness and the thickness
ratios conform to the physically expected trends.

As indicated before in a plate that consists of two dissimilar layers, because of the
absence of material symmetry in thickness direction the bending and membrane components
of the crack solution are always coupled. Thus, since crack opening u, and rotation ¢, are
always nonzero regardless of the loading conditions, in addition to the jump discontinuity
at the interface, the dependence of the stress intensity factor on z along the crack front
would always be linear. This may be seen from the example shown in Fig. 10. The figure

2.t
Eg/Eq=5.
1.5
9
<
A
) el ,
.6t
, 0.2
O-0: - 7.5 2

a/h

Fig. 8. Normalized stress intensity factor k,/k, in a laminate that consists of two isotropic layers
and is subjected to cylindrical bending M., = M, away from the crack region. v, = v, = 0.3,
k, =k,(h—co), ko = 0,\/a, o, = 6My[h>, hylh, = 0.1.
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17.2¢

a/h
Fig. 9. The effect of h,/h, and a/h on k,/k, in a two-layer plate under bending. Material 1: B,
Material 2: 4, ky = k,(h—cy), ko = 64/, 6, = 6Mo/h%, h = h,+h,.

shows the distribution of the stress intensity factor k,(2), (£ = z+ ¢,) along the crack front
for a two-layer plate under membrane loading. Note that the Young’s modulus E, in the
loading direction in layer 1 is greater than that in layer 2 (Material A and Material B in
Table 5). Consequently, k(Z) in layer 1 is greater than k(Z) in layer 2. This, of course, is
the physically expected result.

In the third group of examples we consider the crack problem in a plate that consists
of three dissimilar layers [Fig. 1(c)]. Since there is again no material symmetry, the mem-
brane and bending components of the solution would always be coupled regardless of
loading. Some calculated results showing the thickness distribution of the stress intensity
factor k,(2), (£ = z+¢,) along the crack front are given in Fig. 11.

The remaining resuits given in this section concern the rather peculiar role the Poisson’s
ratio plays in the thickness distribution of the stress intensity factor in bonded isotropic
layers under membrane loading. For a plate which consists of two bonded isotropic layers
the effect of the Poisson’s ratio is shown in Figs 12 and 13, where E,/E, = 5, v, = 0.3 and
v, is varied between 0 and 0.45. The interesting result here is that under neutral plane
membrane loading the normalized stress intensity factor turns out to be independent of the
crack length if the two layers have the same Poisson’s ratio. This seems to be the consequence
of a more general result, namely that in laminated plates which consist of arbitrary number
of dissimilar isotropic layers, membrane and bending solutions uncouple if all layers have
the same Poisson’s ratio. The result follows directly from the fact that in this case the

.8 1 i 1 | 1 1 1 | ! |

E/h.

Fig. 10. Thickness distribution of the normalized stress intensity factor k(£)/k, in a two-layer
plate under membrane loading N,, = Nj. Layer 1 is Material 4, Layer 2 is Material B, 7 = z+¢g,
ko=0,/a,0,= Nofh,alh =1, h,[h, = 1.

SAS 30:17-6
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Z/h.

Fig. 11. The thickness distribution of the normalized stress intensity factor &, (£)/k, along the crack

front in a plate that consists of three dissimilar layers and is subjected to cylindrical bending,

M, = M,. The surface layers, layers 1 and 3 are isotropic with the elastic constants 3E, v = 0.3

and I0E, v = 0.3, respectively. Layer 2 has the constants £ =E, v;=03 (i,j=x,y,2),

G, =ER2(14+03), G.=G,.=3G,; Z=z+c, ko=o0s/a, 06,=6M,h* afh=05,
hy = h, = 0.2h, [Fig. 1(c)].

“%o. 5 i 1.5 Z.
a/h
Fig. 12. The effect of the Poisson’s ratio on the normalized stress intensity factor k,/k, in a plate

which consists of two isotropic layers and is subjected to bending M, = M, [Fig. 1(b)]. Layers I
and 2 are isotropic with E,/E, = 5, v, = 0.3, v, variable, k, = k,(h—c,), ky = a,,\/z; o, = 6M,/h,

hifhy= 1.
1.8
d Vg/Vy=1.5

7.7 |
Q
S 150
~ L .5
N
s 6f

X ] L )N J. ]
1- 8- i 7. 7.5
a/h

Fig. 13. Same as Fig. 12, the plate is under membrane loading N,, = Ny, k, = a,ﬁ, g, = Ny/h.
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coefficients By, (i, j = 1,2), and B of the plate stiffness matrix become zero [see eqns )
(13) and the discussion that follows]. For example, for a two layer medium from Fig. 1(b)
and (12) it is seen that

oA I = 2
1 — d
[BJ j [Cés zdzt| |z P
ClL C?
=[ ."][(hl—co)z—cm[ ;’}[(h—co)z—(hl—co)zl, G,j=12. (55
C66 C66

For an isotropic material we have [see (6), (7) and (17)]

E(1—v) B Ev _E
C“=(1+v)(1—2v)’ C”_(1+v)(1—2v)’ C“'2(1+v)’ (56)
Co E Cry= (57)

T a=vd+v)’ EDED)
From (55), (56) and (57) it then follows that B,,, B, and By, (defined in terms of either
C,; or C;;) would vanish if the two layers have the same Poisson’s ratio and if the distance
¢, defining the neutral plane is calculated from

1 E,[h, 1/(h,Y
s+l

E2h2 ’
YE

(38)

co=h

where E, and E, are the Young’s moduli of the layers 1 and 2, respectively. In a layered
plate it may easily be shown that ¢, given by (58) is the same as the location of the neutral
plane one obtains from elementary equilibrium considerations. One can also show that the
result B;; = 0 = Bgg (i, j = 1,2), remains valid for any number of layers having only in-
plane isotropy and equal in-plane Poisson’s ratios, and the stress intensity factors are
independent of the actual value of the common Poisson’s ratio.

In the uncoupled case the membrane solution of a laminated plate containing a through
crack may be approximated by the solution of the corresponding generalized plane stress
problem. Observing that in this case the crack opening displacement is defined by u,(0, y)
only, the stress intensity factor for the ith layer may be obtained from

. E,
ki@ = —lim>'/2=»)g.0), (59)

where g,(y) = (8/0y)u, (0, y) is obtained from

1[“gi(n) 2
nf_at_ydt—Efl(y), —a<y<a, (60)

f1is defined by (33) and E is the average modulus given by
1
E=EZE,-h,». (61)

For example, for a laminate under uniform membrane loading N,, = N,, for the ith layer
we find
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k(Z)/ko
T

1 1
'50. 4 .4 .8 .8 7.

Fig. 14. Thickness variation of the stress intensity factor in a plate which consists of two isotropic
layers and is subjected to membrane loading N,, = Ny. Z=z+4¢,, ko= (N(]/h)\/;, h, = h,.
E,/E, =2, full line: v, = 0.45, v, = 0.1, dashed line: v, = v,.

E; N,

(@) = ETh a. (62)

For v,/v, = 1 in the example considered in Fig. 13, (62) gives k,/k, = 5/3 which is the same
as that obtained from the integral equations described in Section 3.

The effect of differences in the Poisson’s ratio of the layers on the stress intensitiy factor
in a two layer laminate under membrane loading may be seen in Fig. 14. One of the examples
shown by the figure has equal Poisson’s ratios and, hence, piecewise constant stress intensity
factor [k,/kq = 2/3 and 4/3, see (62)]. In the other example v, 5 v, and, consequently, the
problem is coupled, that is the membrane loading gives rise to both membrane and bending
stresses. A similar example for a three layer laminate under membrane loading is shown in
Fig. 15, where again the dashed lines are obtained from the integral equations given in

4
i
[ ———
3l
0
L2
~
N2
L}
~—
-~
7
o 1 | S | [ | ! NI
0. .2 .4 € .8 7.

Z/h
Fig. 15. Thickness variation of the stress intensity factor in a three-layer laminate under membrane
loading N,, = Ny. Z = z+co, hyfhy = 5, by = by, ko = (No/h)ﬁ; full line: E,/E, = 3, E,/E, = 10,
v, = 0.5, v5 = 0.2, layer 2 has only in-plane isotropy with v, = 0, G1,, = E,/2, G5.. = Gy, = 3Gy
dashed line: v, = v, = v3; =0, E|/E, = 3, E;/E, = 10, G,, = E;/2, G,,, = Gy, = 3G,,,.
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Fig. 16. Stress intensity factors in three-layer laminates under membrane loading N, = N,.
Z=1z4cy, hi/h =02, hy/h = 0.6, h;/h =02, E,/E, =2, E;/E, = 3, full lines: v, = 0.3, v, = 0.45,
v3 = 0.1; dashed lines: v, = v, = v,.

Section 4 and are verified by using (62). Full lines show the result obtained from the coupled
problem. In Fig. 15 the dashed lines also show an example in which layer 2 has only in-
plane isotropy and vet the stress intensity factors are piecewise constant and are the same
as the plane stress results given by (62). Figure 16 shows the results of another example for
three-layer laminates.

The results given in this section regarding the stress intensity factors in laminated plates
with a through crack indicate that generally the problem is coupled and, depending on the
accuracy required, even under membrane loading, it may not be possible to avoid solving
the related integral equations.
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